

joint work with

Raphael Brieger

Markus Heinrich

Martin

Kliesch

Magic and other shadow arts

Ingo Roth, Nov 18th 2024

Stability of classical shadows under gate-dependent noise

arXiv:2310.19947

Technology Innovation Institute Quantum device characterization Extract information about a quantum device from observation VALIDATION BENCHMARKING diagnose CERTIFICATION ESTIMATION LEARNING **IDENTIFICATION** *Learn* as much as *feasible* ... use as much as possible!

Theory

... **use** as much as possible!

Building trust

Benchmark fabrication & inform design

Understand noise and errors

S S

Calibrate control & tune-up

C	/	/	/	• •]
Ċ	/	/	/)
Ċ	/	/	1		2

Noise mitigation

IBO

Noise-aware compilation / algorithms

MEASURES OF COMPLEXITY

Quantum characterization and randomness and non-stabilizerness

 $\{\Pi_x = |x\rangle \langle x|, \quad x \in \mathbb{F}_2^n\}$

 $\{\Pi_x = |x\rangle \langle x|, \quad x \in \mathbb{F}_2^n\}$

 $\{\Pi_{x,g} \propto g \,|\, x \rangle \langle x \,|\, g^{\dagger}, \quad x \in \mathbb{F}_2^n, g \in G\}$

 $\{\Pi_x = |x\rangle \langle x|, \quad x \in \mathbb{F}_2^n\}$

 $\{\Pi_{x,g} \propto g \,|\, x \rangle \langle x \,|\, g^{\dagger}, \quad x \in \mathbb{F}_2^n, g \in G\}$

 $\{\Pi_x = |x\rangle \langle x|, \quad x \in \mathbb{F}_2^n\}$

 $\{\Pi_{x,g} \propto g \,|\, x \rangle \langle x \,|\, g^{\dagger}, \quad x \in \mathbb{F}_2^n, g \in G\}$

 $\{\Pi_x = |x\rangle \langle x|, \quad x \in \mathbb{F}_2^n\}$

$$\{\Pi_{x,g} \propto g \,|\, x \rangle \langle x \,|\, g^{\dagger}, \quad x \in \mathbb{F}_2^n, g \in G\}$$

A positive-operator valued measure (POVM) is **informationally complete (IC)** if

$$S = \sum_{g,x} |\Pi_{x,g})(\Pi_{x,g}|$$
 is invertible.

[Scott 2006]

G a unitary 2-design

Here ... G sub-set of the Clifford group!

Classical shadows ... surprisingly efficient

Protocol: [Scott 2006], ... 1) Measure $\{\Pi_{x,g}\}$ on state ρ 2) Calculate and average

 $\hat{o}(g, x) = (O \mid S^{-1} \mid \Pi_{x,g}) \in \mathcal{O}(d)$

By construction ...

Theorem: For $O = |\psi\rangle\langle\psi|$ and G a 3-design,[Huang, Kueng & Preskill 2020] $Var[\hat{o}] \in \mathcal{O}(1)$.

Classical shadows ... what could possibly go wrong?

Noisy-frame operator:

Gate-dependent noise!

$$\tilde{S} = \sum_{x,g} |\Pi_{x,g}\rangle (\Pi_{x,g} | \Lambda(g)$$

Biased estimator:

$$\mathbb{E}[\hat{o}] = (O, \rho) + (d+1)(O_0 | S - \tilde{S} | \rho)$$

Large bias?!?

Definition :
bias
$$\sim \kappa(d) \times$$
 implementation error
 $\kappa(d) \in \mathcal{O}(1)$ otherwise $\kappa(d) \in \Omega(d^{1/c})$
"stable" "Really instable"

e.g. naive bound :

bias $\leq (d+1) \max_{g \in G} \| \operatorname{id} - \Lambda(g) \|_{\diamond}$

Instability ...

Let $O = |H\rangle \langle H|^{\otimes n}$ with $|H\rangle \propto |0\rangle + e^{i\pi/4} |1\rangle$ and *G* local Clifford unitaries.

> There exist $\Lambda_{\epsilon}(g) = (1 - \epsilon) \text{ id} + \epsilon \Lambda(g)$ gate-dependent noise such that

such that $bias = \kappa \epsilon$ with $\kappa \in \Omega(d^{1/4})$ "Really instable"

Fidelity estimation with local shadows.

Are there classes of **stable shadow estimation** settings

Maybe less magic, please.

Theorem: $G \subset Clifford$, it holds bias $\leq ||O||_{st} \max_{g \in G} || \operatorname{id} - \Lambda(g) ||_{\diamond}$ Pauli observables Stabiliser states Scaling function $\kappa(d)$ Implementation error ϵ

This bound is tight. Similar control over the variance.

Stable settings, e.g.

Bounded-degree local Hamiltonians

And 'robust' classical shadows? they are robust, right?

"Really instable"

There exist **gate-dependent noise** such that $\Lambda_{\epsilon}(g) = (1 - \epsilon) \text{ id} + \epsilon \Lambda(g)$ $\text{bias}_{\text{robust shadow}} \geq \langle O_0 \rangle \Omega(de^{\epsilon})$

However!

Requires **Pauli-spikiness** of effective noise and **support of observable** to **conspire**!

Stable, e.g. for Pauli-isotropic noise

Robust super-shallow circuits

More robust classical shadows ...

Compressive Gate-set tomography for robust shadows

Compressive Gate Set Tomography Panhael Brinner Inno Both and Martin Kliesch

Consistent under-rotation ...

$\pi/2$ -pulse implementation of fidelity estimation on single qubit

Semi-device dependence / robustness is important

- In case you were worried, classical shadows are surprisingly robust for 'non-magic' observables
- Mitigation can sometimes even do harm for gatedependent noise

shadows

of classical

Stability under ga

gate-dependent noise

 Noise assumption might be to simplistic! More studies with gate-dependent noise & beyond!